Simultaneous in vivo measurement of lumped constant and rate constants in experimental cerebral ischemia using F-18 FDG.
نویسندگان
چکیده
Lumped and transfer rate constants in ischemic brain tissue must be measured to estimate accurately cerebral glucose utilization by the deoxyglucose method. We studied the bilateral middle cerebral artery occlusion model in 17 cats, 5 with a 1-hour occlusion, 5 with a 4-hour occlusion, and 7 with a sham operation. The time course of cerebral tissue radioactivity (Ci*(t)) was monitored by external coincidence counting during a programmed infusion of [18F]-2-deoxy-2-fluoro-d-glucose (18F-2-FDG). Arterial plasma concentration (Cp*(t)) of the tracer was kept constant during the first 45 minutes. Rate constants were estimated from Ci*(t) and Cp*(t) by a nonlinear least-squares fitting routine. The lumped constant was estimated from the fit of the ratio of extraction fractions of glucose and 18F-2-FDG by nonweighted, nonlinear least-squares fitting. In the 4-hour-occlusion model, the transfer constant k1* was 23% lower, k3* 39% lower, and the lumped constant 78% higher than in the sham-operated animals. In the 1-hour-occlusion model, k3* was 26% lower than in the sham-operated animals but the lumped constant was not significantly different. The rate of glucose utilization was significantly different in the 4-hour-occlusion model compared to the sham-operated animals (48% decrease, p less than 0.05) but was not significantly different in the 1-hour-occlusion model.
منابع مشابه
Potential of early [(18)F]-2-fluoro-2-deoxy-D-glucose positron emission tomography for identifying hypoperfusion and predicting fate of tissue in a rat embolic stroke model.
BACKGROUND AND PURPOSE Experimental stroke models are essential to study in vivo pathophysiological processes of focal cerebral ischemia. In this study, an embolic stroke model in rats was applied (1) to characterize early development of regional cerebral blood flow and metabolism with positron emission tomography (PET) using [(15)O]H(2)O and [(18)F]-2-fluoro-2-deoxy-D-glucose (FDG); and (2) to...
متن کاملAbsolute quantification of regional cerebral glucose utilization in mice by 18F-FDG small animal PET scanning and 2-14C-DG autoradiography.
UNLABELLED The purpose of this study was to evaluate the feasibility of absolute quantification of regional cerebral glucose utilization (rCMR(glc)) in mice by use of (18)F-FDG and a small animal PET scanner. rCMR(glc) determined with (18)F-FDG PET was compared with values determined simultaneously by the autoradiographic 2-(14)C-DG method. In addition, we compared the rCMR(glc) values under is...
متن کاملThe Effect of Pistacia vera L. Gum Extract on Oxidative Damage during Experimental Cerebral Ischemia-Reperfusion in Rats
Oxygen free radicals may be implicated in the pathogenesis of ischemia reperfusion damage. As the antioxidant effects of some species of Pistacia have been reported, the protective effects of Pistacia vera L. gum extract (0.1-0.5 g/kg) on oxidative damage following cerebral ischemia were studied in rats. Ischemia was induced using four-vessel occlusion model and evaluated using measurement of m...
متن کاملGlucose metabolism in reperfused myocardium measured by [2-18F] 2-fluorodeoxyglucose and PET.
OBJECTIVE [2-18F] 2-fluorodeoxyglucose (FDG) is widely used to trace glucose metabolism for cardiac imaging with positron emission tomography. Because the transport and phosphorylation rates differ for glucose and FDG, a lumped constant (LC) is used to correct for these differences. The effects of ischemia and reperfusion on the LC in vivo are unknown. To determine the validity of FDG as a trac...
متن کاملIn vivo imaging of dopaminergic neurotransmission after transient focal ischemia in rats.
The precise biologic mechanisms involved in functional recovery processes in response to stroke such as dopaminergic neurotransmission are still largely unknown. For this purpose, we performed in parallel in vivo magnetic resonance imaging and positron emission tomography (PET) with [(18)F]fluorodeoxyglucose ([(18)F]FDG) and [(11)C]raclopride at 1, 3, 7, 14, 21, and 28 days after middle cerebra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 18 1 شماره
صفحات -
تاریخ انتشار 1987